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The scattering of water waves by an array of N bottom-mounted vertical circular 
cylinders is solved exactly (under the assumption of linear water wave theory) using 
the method proposed by Spring & Monkmeyer in 1974. A major simplification to this 
theory has been found which makes the evaluation of quantities such as the forces 
on the cylinders much simpler. New formulae are given for the first and mean second- 
order forces together with one for the free-surface elevation in the vicinity of a 
particular cylinder. Comparisons are made between the exact results shown here and 
those generated using the approximate method of McIver & Evans (1984). The 
behaviour of the forces on the bodies in the long-wave limit is also examined for the 
special case of two cylinders with equal radii. 

1. Introduction 
With the construction of large ocean structures such as oil rigs which consist of a 

number of legs on which is mounted some form of structure, the interaction between 
water waves and arrays of bodies has become increasingly important and much work 
has been done on the subject in recent years. Most notably Kagemoto & Yue (1986) 
have shown how a general three-dimensional water-wave diffraction problem 
concerning a structure consisting of a number of separate elements can be solved 
exactly in terms of the diffraction characteristics of each of the individual elements. 
This is a powerful method which solves in principle all multiple-body diffraction 
problems where the solutions are already known for the individual elements. 

In  the present work attention is restricted to the particularly simple, but not 
unrealistic, geometry, of N vertical circular cylinders spanning the whole depth of 
water. This enables progress to be made analytically which leads to expressions for 
the various quantities of interest which are simple to compute. The fact that the 
cylinders extend throughout the depth of water allows the depth dependence to be 
factored out of the problem and eliminates the need to consider evanescent modes. 
With the dept>h dependence removed the problem is equivalent to the two- 
dimensional acoustic problem of scattering by N sound hard circular cylinders, about 
which much has been written. 

The direct method of solution that we shall use here was devised by Zaviika (1913) 
and rediscovered for the case of water waves by Spring & Monkmeyer (1974). Other 
methods of solution for this problem have been considered, notably that pioneered 
by Twersky (1952) who constructed a solution using an iterative procedure in which 
successive scatters by each of the cylinders were introduced a t  each order. This 
method was extended to the water-wave case by Ohkusu (1974). The main drawback 
of this iterative scheme is that it rapidly becomes unmanageable as the number of 
bodies increases. A brief survey of these and other methods for the solution of the 
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acoustic problem is given in Martin (1985). In  the context of water waves Mingde & 
Yu (1987) have studied the case of shallow water-wave diffraction of multiple 
circular cylinders using the same multiple scattering techniques as Spring & 
Monkmeyer (1974). Much of the work on the problem of the scattering of water waves 
by an array of bodies has been to evaluate forces, both the amplitude and phase of 
the first-order force and the mean second-order drift force, since i t  is well known (see, 
for example, Molin 1979) that this drift force on a body can be calculated from the 
solution to  the linear first-order potential problem. Both these problems will be 
considered here as well as the evaluation of free-surface amplitudes. This is 
important in the design of structures such as oil rigs where it is necessary to avoid 
the waves created by the interaction between the legs of the platform slamming into 
the underside of the upper structure. Clearly when the waves are large nonlinear 
effects will be very important but an analysis of the linear problem should give a good 
qualitative picture of the kind of resonances that the interactions between the 
elements of the structure are likely to produce. 

In  this paper i t  will be shown how the method of Spring & Monkmeyer (1974) can 
be considerably improved upon. A simplified expression for the velocity potential in 
the vicinity of a particular cylinder is developed which leads to simple formulae for 
the first- and mean second-order forces on that body and also provides an efficient 
method for the calculation of free-surface amplitudes. 

An approximate solution to this problem based on the work of Simon (1982) was 
given by McIver & Evans (1984) in which they assumed that the cylinders were 
widely spaced. They approximated the circular waves emanating from a particular 
cylinder as a plane wave a t  the other cylinders. Comparison is made in their paper 
between their approximate results and those of the exact theory for the first-order 
force and the results show a very good agreement even when the cylinders are fairly 
closely spaced. Here we shall compare the values obtained for the free-surface 
elevations in the two cases. This is perhaps a more stringent test since the force is an 
integrated quantity whereas the free-surface elevation is not. 

2. Formulation 
Under the usual assumption of linear water wave theory there exists a velocity 

potential @(x, y, z ,  t ) ,  where x and y are coordinates in the mean free-surface and z is 
vertically upwards. We assume that there are N ( 2 1) fixed vertical circular cylinders 
each of which extends from the bottom, z = - h, up through the free surface. The 
depth dependence of the problem can then be factored out and if we also assume that 
all motion is time harmonic with angular frequency w we can write 

@(x, Y, 2, t )  = Re {$(x, y)f(z) e-iwt), (2.1) 

igA cosh K ( Z  + h) 
w coshKh 

where f(z) = -- 

and K is the real positive solution of the dispersion relation 

K tanh Kh = K = w2/g .  

The free-surface elevation is then. given by 

H ( x ,  y, t )  = Re {q(x,  y) e+Ot}, 
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FIGURE 1. Plan view of two cylinders. 

where r(x7 Y) = A$+, Y). (2.5) 

Thus A represents the amplitude of the incident wave. 
We will use N +  1 coordinate systems : ( r ,  0 )  are polar coordinates in the (2, y)-plane 

centred at the origin whilst (r5, 8,), j = 1, . . . , N are polar coordinates centred at (xj, 
yi) which is the centre of the j t h  cylinder. The various parameters relating to the 
relative positions and sizes of the N cylinders are shown in figure 1.  

An incident plane wave making an angle /3 with the x-axis is characterized by 
$ - ei@cosp+ysinp) eixrcos(B-B) 

I -  

, (2.6) = I, eiKrjcos(Oj-B) 

where I$ (= eix(zjcosfl+yjsinfl) is a phase factor associated with cylinder j. This in turn 

n--m 

see, for example, Gradshteyn & Ryzhik (1965, p. 973, equation M027). 
Now the effect of a given cylinder on the incident wave will be to produce a 

scattered wave which will in turn be scattered by adjacent cylinders and so on. A 
description of all the possible interactions that take place is provided by associating 
with each cylinder a general wave potential describing waves radiating away from 
that cylinder, which, together with the incident wave potential, describes the total 
wave field. 

A general form for such a radiating wave emanating from cylinder j is 

for some set of complex numbers A:. Here 
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The introduction of the factor Z i  simplifies the results that will be obtained. If, 
instead of ALZL, we put B i  in (2.8) then it can be shown that Jn(Ka,) = 0 implies 
BL = 0 and so no restrictions are being added by the inclusion of the factor 2;. 
Clearly the value of A; is irrelevant if Jn(Kaj) = 0 and so we shall assume that this 
is not the case in the following analysis. The total potential can thus be written 

N 

$ = $ 1 + W  
j=l 

N o o  

(2.9) - - eixrcos(H-@) + C A’, 2; Hn(Krj )  e’noj. 
j=1 n=-ffi 

Using Graf s addition theorem for Bessel functions (Gradshteyn & Ryzhik 1965, p. 
979, equation WA394(6)) we can express (2.9) in terms of the coordinates ( rk ,  0,) and 
then apply the boundary conditions which are 

(2.10) a$ - = 0  on r k = a k ,  k = l ,  ..., N .  
ark 

Some algebra leads to  the following infinite systems of equations: 
N m  

Ah + C 
+f  

C A3,ZL ei(n-m)a- i k H H , - , ( K R j k )  = -Ikeim(n/2-fi), 
j=l n--m 

k = 1 ,..., N ,  -XI < m < 00. (2.11) 
It is important to note that in using the addition theorem for Bessel functions in 
order to write functions of ( r j ,  Oj) in terms of the coordinates ( r k ,  0,) we have had to 
assume that r k  < Bjk. This is certainly true on the boundary of the kth cylinder for 
a l l j  and thus (2.11) is valid. The expression obtained for ( rk ,Ok)  is in fact 

m 

$( rk ,  0,) = c [Ik J n ( ~ r k )  ein(n’*-Hk+fi) +Ak,Zk,Hn(Krk) einek] 
n- -a  

N m  m 

4- 2; I: Jm(Krk)Hn+,(KRjIc) eim(x-Hk)ei(n+m)ujk (2.12) 

and this expression is valid if rk < Rjk for all j. This is therefore an expansion valid 
near to cylinder k. Replacing m by - m  in the final term allows us to write this term 
as 

j-1 n---a, m--m 
C k  

(5 A ~ Z ~ H n - m ( K R j k ) e i ( n - m ) u j k  ) m  J ( K r  k )  eime* ’ 

m=-ffi 1-1 n=-m 
+ k  

The group of terms contained within the brackets can now be substituted for using 
the infinite system of equations (2.11). The resulting simple formula is 

m 

$ ( r k , 6 k )  = Ak,(Zk,Hn(KTIc)--Jn(Krk))einHlc if r k  < R, Vj.  (2.13) 

This expression is, to the authors’ knowledge, new and provides an extremely simple 
formula for the velocity potential near any cylinder. In particular the velocity 
potential on the kth cylinder reduces to 

n=-m 

(2.14) 

where Wronskian relations for Bessel functions have been used. 
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In order to evaluate the constants AI, the infinite system (2.11) is truncated to an 
N ( W +  1) system of equations in N(2M+ 1) unknowns : 

N M  

Ak m + AI, 23, e'(*-m)a~~H,-m(KR5k) = -Ik eim(x/2-p), 
j-1 n--M 
+ k  

k = l ,  ..., N ,  m = - M  ,..., M .  (2.15) 

By increasingM greater accuracy can be achieved a t  the expense of computing time. 
It was found that, except when the cylinders are very close together, taking M = 6 
produced results accurate to four significant figures and in all following calculations, 
unless otherwise stated, this value was used. 

Note that the solution for the case N = 1 is given exactly by 

A m -  1 - - I  1 eimW2-,& (2.16) 

and the equivalence of the expressions (2.13) and (2.9) is clear because of the incident 
wave expansion (2.7). If we assume that the cylinder is a t  the origin and p = 0 this 
gives 

A; = - im, (2.17) 

recovering the result of MacCamy & Fuchs (1954). 

3. Forces 

the surface of the cylinder. It is Re(X:'e-i"t) where 
The first-order force on the j t h  cylinder is given by integrating the pressure over 

(The upper elements of a bracketed pair refer to the force in the x-direction and the 
lower elements to that in the y-direction.) Evaluation of the integral, using (2.14), 
gives - 

x5 = - { 2pgA tanh Kh @-l { ;}A?). 
K2H' , (Ka , )  

The time-independent factor in the first-order force on an isolated cylinder in the 
direction of motion, F, can be found using (2.17). We find 

and 

F =  4pgA tanh Kh 
K~H',( KU) 

IX~I = ; I F I ~A~~{~}A;~ 

(3.3) 

(3.4) 

The amplitude of the first-order force on multiple circular cylinders has been 
considered by many previous authors, for example Spring & Monkmeyer (1974), and 
so we shall not dwell here on the results that can be obtained from (3.4). One example 
will be sufficient and this is shown in figure 2. Here we are concerned with four 
cylinders arranged at the vertices of a square of side length R. The various 
parameters are a/h = 0.5, R / h  = 2 and /3 = in. The cylinders are numbered clockwise 
1 4  and are situated a t  (-h, h), (h, h), (h, -h) and ( - h ,  -h) respectively, so that the 
forces in the direction of wave advance on cylinders 1 and 3 are identical. The curve 
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1.8- 

1.6- 

1.4- 

1.2- 

IXlFI 1.0- 
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--- Cylinder 4 
-I- Cylinder 2 
-Cylinder 1 
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FIGURE 2. Non-dimensional amplitude of the first-order force in the direction of wave advance 
plotted against K a  for a group of four cylinders situated at  the vertices of a square (a /h  = 4, 
R / h  = 2,@ = $7~). 

K a  

shows that interaction effects can be extremely important in determining the 
amplitude of the first-order force. 

We now turn our attention to the mean second-order drift force. The drift force is 
associated with a transfer of momentum by the waves and is essentially a nonlinear 
phenomenon. However, it has been shown that the contribution to the mean second- 
order drift force, as was mentioned in the introduction, can be calculated purely from 
the first-order potential. This force is generally small compared with the first-order 
force but, unlike that force, because the drift force is steady with constant 
magnitude, it can be very important when considering problems such as the mooring 
of structures. 

The drift force on the j t h  cylinder may be written as follows : 

where 

(Eatock Taylor & Hung 1985). Note that this is a time-independent quantity and 
that the real and imaginary parts of fj correspond to the drift force in the x- and y- 
directions respectively. For a detailed discussion of the complete second-order 
diffraction problem for an axisymmetric body, including a derivation of this 
expression, the reader is directed to Kim & Yue (1989). 

From (2.13) it follows that 
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Using this expression together with equation (2.14) gives, after some manipulation, 

where we have omitted the sub- and superscript j s  for convenience and an asterisk 
denotes the complex conjugate. This can be written 

A!, 

which is a more convenient form for computation. From (2.16) we have that in the 
single cylinder case A,*+,A, = AT,A-,-, = -ieifl, (3.91 

which gives, after some simplification involving Wronskian relations for Bessel 

This expression is given in Appendix B of Kim & Yue (1989). 
Using (3.8) and (3.10) we can compute the non-dimensional drift force in the 

direction of wave advance, f/fl, for the same configuration as in figure 2 and this is 
shown in figure 3. Four curves are shown, one each for cylinders I ,  2 and 4 and then 
one which is the sum of the drift forces on all four cylinders. The curves show that, 
as in the case of first-order forces, interaction effects are extremely important when 
determining the drift force on either individual elements of a structure or on the 
structure as a whole. Note that for some wavenumbers the drift force on cylinder 4 
is in the opposite direction to the direction of the incident wave with a magnitude 
greater than that of fl. 

Eatock Taylor & Hung (1985) speculated that the total drift force on a group of 
N identical cylinders in the direction of wave advance tends to N 2  times the drift force 
on an isolated cylinder as the wavenumber, KU, tends to zero (i.e. in the long-wave 
limit). This was subsequently proved by McIver (1987) using matched asymptotic 
expansions, who showed that F, the total drift force on the group non- 
dimensionalized with respect to the drift force on a single cylinder satisfies 

lim F =N2+O(ar /R)2 ,  
xa+o 

(3.11) 

where R is a typical separation between the columns. However, in his paper McIver 
points out that if the cylinders are placed a t  the vertices of a regular polygon then 
the second term in this expansion vanishes and -we are left with 

lim F = N 2  + O ( U / R ) ~ ,  
ra+o 

(3.12) 

The N 2  result is shown very clearly in figure 4 which plots F against KU for three 
configurations ; an equilateral triangle, a square and a regular pentagon. In  each case 
the ratio of the cylinder radius to the length of the side of the regular polygon 
concerned was 0.05. 

The behaviour of multicolumn structures in very long waves is of considerable 
practical importance, particularly in the case of the drift force as this is closely 
related to highly damped resonances t.hat can be excited in irregular seas by sum and 
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FIGURE 3. Non-dimensional drift force in the direction of wave advance plotted against KU for 
four cylinders arranged as in figure 2. 

26 , 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0 . h  0.09 0.10 
K a  

FIGURE 4. Total non-dimensional drift force on a group of cylinders plotted against KU for three 
configurations, all with the cylinders situated a t  the vertices of a regular polygon. 

difference frequency effects which, owing to the low natural frequencies of certain 
modes of large offshore structures, can have a major influence on fatigue and thus the 
lifetime of such structures. In  the next section we look in more detail a t  the 
behaviour of the infinite system (2.11) in the long-wave limit. 
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4. Long-wave approximations 
Some analytic progress can be made towards the solution of (2.11) in the case of 

long waves. The term long waves is used to mean waves whose length is much greater 
than the spacing between the cylinders, i.e. the limit K U ~ + O  with aj/Rj,  fixed. An 
alternative limiting procedure would be Ka, + 0 with K R ~ ~  = O( 1) which corresponds 
to a 'small body' limit. This second case is not very interesting as the system of 
equations (2.11) simply reduces to the N single cylinder equations Ak, = 
- I  k eirn('l2-fl, k = 1, . . . , N .  Thus the interaction effects become negligible as the ratio 
of the body radius to the separation becomes small, a not very surprising result. 

The limit K a j + O ,  a,/Rf, fixed is more difficult to analyse and to facilitate this 
analysis we shall restrict our attention to the case of two cylinders of equal radius. 
Without any loss of generality we can fix the relative positions of the cylinders and 
consider the effect of varying the incident wave angle, p. Here we will take a12 = 
-in (azl = in). The case p = 0 was considered by Eatock Taylor & Hung (1985). 
They assumed that the leading-order behaviour of the coefficients could be obtained, 
a t  least approximately, by considering a small truncation size. The value they used 
was M = 1.  It is natural to ask what differences, if any, are obtained if a larger value 
of M is used. Here we shall look a t  the problem (for arbitrary p) with M = 1 and then 
with M = 2. 

As Ka, --f 0 the problem is related to that of uniform flow past the cylinders with an 
upstream velocity, U,  given by A(g/h)f. When p = 0 this problem is equivalent to 
that of uniform flow past a cylinder next to a wall and it will be instructive to look 
a t  this before studying the full problem. The geometry is as shown in figure 5 and the 
details can be found in Appendix A. 

Thus, from (A 17), we expect to find that in the limit as Ka+O with p = 0 there is 
a steady suction force between the cylinders of magnitude 

(4.1) 

where h = a/Rlz  (= a/2b).  
We begin by assuming that for any M the solutions of the truncated system (2,15) 

are approximations to the actual solutions of the full problem which would be 
obtained by letting M +  co. In particular it is reasonable to assume that, as Ka+ 0,  
the order of magnitude of the coefficients A: is independent of the truncation 
parameter M .  Now, by considering M = 0, and letting KU+O in (2.15) we find that 
A$ = O(1) (k = 1,2), and by the previous assumption this is true for all M .  By 
examining in detail equation (2.15) with M = 1 and Ka+0, we find that A'",, = O(1) 
also (k = 1,2). In  order to determine these coefficients, we retain only the leading- 
order terms in the 6 x 6 matrix. We find after inversion that At +- 1, 

2napgA2A3( 1 + 2h2) + O(A7), 

(1-h4)~]C1 = i(e'iF+A2e*iF) (k = i , 2 ) .  (4.2) 

If we substitute these results into the formula for the first-order force, (3.4), we get 

(4.3) 

which is an approximation to the amplitude of the exciting force as K a  + 0 using a 
truncation parameter M = 1.  

For small A,  this agrees, up to order h2, with the formula derived by McIver (1987) 
using matched asymptotic expansions and, for p = 0, with that obtained by Eatock 
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FIGURE 5. Coordinate system for uniform flow past a cylinder next to a wall. 

McIver (1987) Equn (4.3) Based on numerical 
computation ) of (2.15) 

TABLE 1. First-order force magnification factor, p = in 

Taylor & Hung (1985). However, for arbitrary h (< t )  equation (4.3) gives results 
which are closer to those obtained from a full numerical solution of (2.15) than those 
which are obtained by only retaining terms up to order h2. The variations are shown 
in table 1 where it can be seen that equation (4.3) is within < 2 YO of the exact value 
even for A = 0.4. 

Next we turn to the case M = 2 where the analysis is not so straightforward. The 
details can be found in Appendix B. The following results are obtained for small A :  

A!, = A ! ,  = i[(l+h4)eip+hze-ip]+O(h6), I A :  = A: = -i[h2eip+ (1 + h4) e-ip] +O(h6) ,  

4h3 
A!, = -A?,  = --[[h2eip+e-ip]+O(h6), 

K a  
(4.4) 
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‘Exact ’ formulae, in terms of A, can be calculated but without solving for M > 2 we 
cannot be confident of the accuracy of the higher-order coefficients and so these have 
been omitted. If we substitute these expressions into (3.4) we find 

(1 + A2 + A*) C O S ~  

(1 -A2 + A*) sinp (4.5) 

which is precisely the same as (4.3) when expanded in powers of A. 

validity of the result (4.5), in the long-wave limit. 

given by (3.10), reduces to 

This agreement for both M = 1 and M = 2 up to order A4 gives confidence in the 

Let us now turn our attention to the drift force. The drift force on a single cylinder, 

in the long-wave limit, where it should be noted that the first two terms in the series 
in (3.10) are required to obtain this leading-order behaviour. This expression is 
identical to that obtained by McIver (1987) using far-field considerations. 

We now have sufficient information to examine the magnitude of the first two 
terms in the series expression (3.8) for the drift force on one cylinder in a group of 
two. From (3.8), and the facts that A ,  = - 1, A_,  = A: and A_,  = -A,*, we obtain, 
for the first two terms in the expression for f ,  

From (4.4) the first term in (4.7) is O ( K ~ ) ~ ,  which is the same order as fi, but the 
second term is O(1). Numerical observations suggest that the second term is 
dominant over all other terms in (3.8) but without solving (2.15) for larger values of 
M we are unable to prove this. Under this assumption, substituting from (4.4) gives, 
for small h up to order A5, 

If we assume that a/h = O(1) then ~ h + 0  as Ka+O and (4.8) reduces to 

and 

- -2nA3sin2p J x  

psaA2 (4.9) 

(4.10) 

which is equivalent to (4.1) if /3 = 0. 
Eatock Taylor & Hung (1985) looked a t  the long-wave limit of the drift force by 

considering just the first term in (3.8). This work shows that the second term must 
be considered for any valid conclusions to be drawn. 

The N2 behaviour of the total drift force is not picked up by this analysis as it is 
not related to the leading-order behaviour of the drift force. 
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x l h  

FIQURE 6. Maximum free-surface amplitudes due to the interaction of an incident plane wave 
(/3 = $,rth = R) on a group of four cylinders ( a / h  = 0.5) arranged at  the vertices of a square. 

5. Free-surface amplitudes 
The amplitude of the free surface is given by (2.4) and thus for a unit-amplitude 

(5.1) 
incident wave 

IWx, Y> t)l = I$(., Y)I * 

Equation (2.13) provides an extremely efficient method for the evaluation of free- 
surface amplitudes near to a particular cylinder. Because of its range of validity it 
can be used at most places of interest in the vicinity of some cylinder k. However, 
this will not be the case far from the cylinder group when (2.9) must be used. 

There is an endless number of cylinder configurations which could be examined. 
We shall illustrate typical results by considering one or two situations having 
application in the offshore industry. 

We begin by considering the array of cylinders in the form of a square, which was 
used in figures 2 and 3 in considering the forces on individual legs of an offshore 
drilling platform. 

corresponding 
to a wavelength of h = 2h. In  the absence of the cylinders the plot would be a uniform 
shade of grey corresponding to a relative maximum wave amplitude of unity. The 
incident waves in figure 6 approach from the south-west. Two features stand out : the 
build-up in front of cylinders 1, 2 and 3 is over twice the amplitude of the incident 
wave whereas in the lee of cylinder 2 destructive interference causes the free-surface 
amplitude to be less than 40% of that of the incident wave. 

Figures 7,  8 and 9 show results for different wavelengths when an incident wave 
with p = 0 (from the west in the figures) is incident on the same square of cylinders 
as used in figure 6. The figures correspond to wavelengths of 3h, 4h and 5h 

Thus figure 6 shows a plot of 1$1 for this configuration for Ka = 
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x l h  

FIGURE 7. Maximum free-surface amplitudes due to the interaction of an incident plane wave 
(B = 0, ~h = &c) on a group of four cylinders (a/h = 0.5) arranged a t  the vertices of a square. 

x / h  

FIQURE 8. Maximum free-surface amplitudes due to the interaction of an incident plane wave 
(B = 0, ~h = in) on a group of four cylinders (a /h  = 0.5) arranged at the vertices of a square. 
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xlh 
FIGURE 9. Maximum free-surface amplitudes due to the interaction of an incident plane wave 
(/3 = 0,  ~h = in) on a group of four cylinders (a /h  = 0.5) arranged at the vertices of a square. 

x / h  

FIGURE 10. Maximum free-surface amplitudes due to the interaction of an incident plane wave 
(/3 = &c, ~h = 2n) on a group of eight cylinders (a /h  = 0.1) arranged in two parallel rows of four. 
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x l h  

FIQURE 11. Detail of the maximum free-surface amplitude in the vicinity of the cylinder 
centred at (0.8h, 0%) in figure 10. 

respectively. The maximum amplitudes that result are similar for the three values of 
h but the position of the large waves is crucially dependent on A. 

Cylinders arranged at the vertices of squares are typical of oil-rig-like structures 
and as such are interesting configurations to examine. Another structure of interest 
is a jetty consisting of two rows of fairly closely spaced cylinders. Figure 10 shows 
such a situation with two rows of four cylinders all with a /h  = 0.1. The wavenumber 
~a is in and the incident wave angle is p = in (from the south-east in figure 10). It 
can be seen that there is a large build-up around the cylinder centred at (0.8h, 0.8h) 
and this is shown in more detail in figure 11 which was obtained using the near- 
cylinder form (2.13). Once the system of equations (2.15) has been solved the 
evaluation of free-surface amplitudes from (2.13) to produce results like those shown 
in figure 11 is extremely straightforward and quick and is preferable to using a 
boundary integral or equivalent numerical scheme which has been developed for 
more general geometries. It should be remembered, however, that the present 
method is limited to the circular geometry considered here. 

6. Comparison with the plane-wave approximation 
McIver & Evans (1984) produced an approximate method based on the work of 

Simon (1982) for the solution of the N vertical cylinder problem using the idea that 
if the cylinders are sufficiently far apart then a wave emanating from one of the 
cylinders can be approximated by a plane wave when it reaches another cylinder. 
Comparison is made in their paper between results for the first-order force obtained 
from their method and results obtained from the exact method of Spring & 
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x lh  
FIGURE 12. Difference in amplitudes predicted by the exact method and the plane-wave 
approximation when a plane wave (p  = 0, ~h = 1 )  is incident on two widely spaced cylinders 
(a/h = 0.5). 

Monkmeyer (1974). These comparisons show that the plane-wave approximation is 
remarkably good even for relatively close spacings. 

It is informative to examine the relative effort that must be used to solve this 
problem by these two methods. In  the exact formulation an N(2M+ 1) system must 
be solved and typically M x 6 gives four-figure accuracy. In  the approximate method 
an N(N-  1) system results and this immediately shows that for large values of N ,  the 
exact method requires the solution of a smaller system. There are other factors that 
determine the total time required to set up and solve these systems, and results in 
McIver & Evans (1984) show that for N < 5 and M 2 3 the plane-wave approximation 
takes less time to solve, though for these small values of N neither is very time 
consuming. However, if one is interested in computing the free-surface elevations in 
the vicinity of a group of cylinders, the amount of effort required to solve the 
truncated system of equations (2.15) is insignificant compared to that needed to 
evaluate the potential a t  a large number of points. Such calculations are best done 
using the exact formulation since even without using the improved plane-wave 
approximation each evaluation of $ requires the computation of N 2  sums of the form 
z&,Bw H,(KT) cine. With the new simple formula (2.13) the velocity potential in 
the vicinity of a particular cylinder can be obtained from one such sum, and a t  points 
where (2.13) is not available equation (2.9), which contains N such sums, must be 
used. These sums converge fairly rapidly but the saving from using the exact method 
described here can still be very significant particularly when N is large. For example 
in figure 11 where N = 8, the potential was evaluated at  400 different points on the 
free surface and thus 400 sums computed. To do the same calculation using the 
plane-wave approximation would have required the evaluation of 25 600 such sums. 
It is therefore clear that in the problem considered in this paper, having the 
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x l h  

FIQURE 13. Difference in amplitudes predicted by the exact method and the plane-wave 
approximation when a plane wave (b = 0, ~h = 1) is incident on two closely spaced cylinders 
(u /h  = 0.5). 

particularly simple geometry of N vertical circular cylinders extending throughout 
the depth, it is more appropriate to use the exact method. If, however, we were 
interested in a multiple scattering problem that could not easily be solved exactly 
then the plane-wave approximation would be useful. We shall therefore use the 
circular cylinder problem as a test problem to explore the limitations of the method 
of McIver & Evans in predicting maximum wave amplitude. 

Thus figures 12 and 13 show the absolute value of the difference between the 
maximum free-surface amplitude predicted by the approximate method and that 
given by the exact formulation for a wave normally incident on two cylinders. In 
figure 12 the separation between the centres of the cylinders is 8a and we can see that 
the maximum error is less than 6 YO. The cylinders are much closer together in figure 
13 with the separation only 2.4a and the error is also greater. At its maximum the 
error is only about 15 %, however, and considering the closeness of the cylinders and 
the nature of the approximation this is remarkably accurate. It should be emphasized 
that this is a comparison of the free-surface amplitude for the complete problem, i.e. 
the incident wave plus the scattered wave. The size of the differences shown using the 
different methods is due to two competing factors : the method being employed, and 
the relative magnitude of the scattered wave compared to the incident wave. Thus 
in situations where the cylinders have little effect on the wave field, such as in very 
long waves, we have found that the two methods produce very similar answers for 
the total wave field. This contrasts with the usual assumption for the validity of the 
plane-wave approximation, namely KR large, or short waves compared to cylinder 
spacing. 
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7. Conclusion 
The exact theory for the scattering of waves by N vertical circular cylinders 

developed by Spring & Monkmeyer (1974) is exploited to make major simplifications 
in the calculation of forces and free-surface amplitudes. The full theory is also used to 
propose improved expressions for the drift force on one of two cylinders in long 
waves. It is shown that the method is more efficient than the approximate method 
of McIver & Evans (1984) when a number of cylinders, N ,  is large. However, their 
method is applicable to a wider class of problems and the high quality of their 
approximation has been confirmed here for the wave amplitude even for closely 
spaced cylinders. 

Applications in the area of offshore structures are presented. The present method 
can also be extended to consider the effect of incident waves on an infinite row of 
identical equally spaced vertical cylinders and also to solve acoustic radiation 
problems in two-dimensions. 

C.M.L. is supported by SERC (MTD Ltd.) grant no. GR/F/32226. The authors 
would like to thank Dr J. B. Lawrie for useful discussions. 

Appendix A 

wall is to let the velocity potential be given by 
One possible way to  solve the problem of uniform flow past a cylinder next to a 

qs = Ux+$ (A 1) 
and then 9 must satisfy 

V2$ = 0 in the fluid, 

_ -  a$ - 0  on y = O ,  
aY 

%=-Usin8  on r = u  
ar 

and $ + O  as lxl-foo. 

In order to determine $ write 

where 
sinn8 sinnB' +-. 

$ n = T  r fn  

This choice for $ automatically satisfies (A 2), (A 3) and (A 5 )  for all integers n. 

expanded in terms of r and 8. First we note that 
In order to apply the body boundary condition to (A 7),  sinn8'/rfn must be 

dt 
1 r t n - l e l i - l ) n  En-' exp ( - kw,) ( - l)n dk = Im- 

(n-l)! 

sin n8' 
-Im-=- 
- e-in$' 

rtn r fn  
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where w1 = y + b + ix = - r r  e-i*. With w2 = w1 - 26 = y - b + ix = rete we thus have 

567 

( - l), k"-' exp ( - kw,) e-2kb d k  
sin n0' 

r', 
-- - Im- 

therefore 

where 

(-l)n+mrmsinm8 ( n + m + l ) !  
= x  m-0 m! (n-  I)! (2b),+, ' 

( -  l )n+m--l  (n  + m -  l)! Anfm 
n!(m- l)! Bmn = 

The boundary condition (A 4) gives 
W 

n-1 

and equating coefficients of sinm8 leads to 

Now A is always less than t ,  and if A = 0 all the unknown coefficients c ,  vanish, 
except c1 which is equal to 1, so we expand all the coefficients c ,  in powers of A. 
Retaining terms up to O(A5) in (A 13) gives rise to the results 

c3 = 3A4 + O(A6), c4 = - 4A5 + O(Aa). J 
The force on the cylinder is given by 

using the same notation as in $3. Some algebra reveals that 

m 

n-1 
Fu = -2pahnV C , C , + ~ ,  

whilst F, = 0, where simplifications are achieved by repeated use of (A 13)' showing 
that, as expected from D'Alembert's paradox, the force in the x-direction vanishes 
but there is a non-zero force in the y-direction. Use of (A 14) shows that 

F = -21cahpU2Aa(l +2A2)+O(A7) ,  (A 17) 
which thus represents a suction force. 
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Appendix B 
The cases M = 0 and M = 1 show that Ai,  A$l are all O( 1) as Ka -+ 0. Increasing M 

to 2 and examining the orders of magnitude of the additional equations shows that 
A$2 must be O(Ka)-'. The matrix equation can then be scaled and reduced to a 4 x 4 
block matrix equation of the form: 

I 
0 
0 I D 

0 
I 
C 
0 

0 
B 
I 
0 

where 

A =(-: -:), B = ( " *  b* a* ") ' 

a = -4iA3, b = -3A4, c = A2, d = - iA3,  

All the elements of this system are O(1) as Ka+O,  smaller terms having been 
neglected. Solving (B l) ,  which is straightforward if laborious, leads to expressions 
for A{' which differ from (4.2) in terms of high order in A. Increasing the truncation 
size still further would presumably give more accurate formulae for these coefficients 
in terms of A and there is no way of telling how accurate our present results are. 
Comparison with numerical solutions to the exact system of equations shows that 
they are correct up  to a t  least O(A4) and results up to this order are given in (4.4). 
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